Controlled rippling of graphene via irradiation and applied strain modify its mechanical properties: a nanoindentation simulation study.
نویسندگان
چکیده
Ripples present in free standing graphene have an important influence on the mechanical behavior of this two-dimensional material. In this study, we show through nanoindentation simulations, how out-of-plane displacements can be modified by strain, resulting in softening of the membrane under compression and stiffening under tension. Irradiation also induces changes in the mechanical properties of graphene. Interestingly, compressed samples, irradiated at low doses are stiffened by the irradiation, whereas the samples under tensile strain do not show significant changes in their mechanical properties. These simulations indicate that vacancies produced by the energetic ions cannot be the ones directly responsible for this behavior. However, changes in roughness induced by the momentum transferred from the energetic ions to the membrane, can explain these differences. These results provide an alternative explanation to recent experimental observations of the stiffening of graphene under low dose irradiation, as well as the paths to tailor the mechanical properties of this material via applied strain and irradiation.
منابع مشابه
How controlled rippling of graphene via irradiation and applied strain can modify its mechanical properties: a nanoindentation simulation study
by means of the least-square method. Figure S1 shows an example of some of the curves obtained from the nanoindentation simulations for the case of the sample under different strains before irradiation. In the equation above δ is the deflection, 2D is the membrane pre-tension, E2D is the two-dimensional Young’s modulus, a is the radius of the membrane and q is a correction factor for a Poiss...
متن کاملEffect of Defects on Mechanical Properties of Graphene under Shear Loading Using Molecular Dynamic Simulation
Graphene sheet including single vacancy, double vacancy and Stone-Wales with armchair and zigzag structure was simulated using molecular dynamics simulation. The effect of defects on shear’s modulus, shear strength and fracture strain was investigated. Results showed that these shear properties reduce when the degrees of all kinds of defects increase. The dangling bond in SV and DV defected gr...
متن کاملCharacterization of Elastic Properties of Porous Graphene Using an Ab Initio Study
Importance of covalent bonded two-dimensional monolayer nanostructures and also hydrocarbons is undeniably responsible for creation of new fascinating materials like polyphenylene polymer, a hydrocarbon super honeycomb network, so-called porous graphene. The mechanical properties of porous graphene such as its Young’s modulus, Poisson’s ratio and the bulk modulus as the determinative properties...
متن کاملQuantifying yield behaviour in metals by X-ray nanotomography
Nanoindentation of engineering materials is commonly used to study, at small length scales, the continuum mechanical properties of elastic modulus and yield strength. However, it is difficult to measure strain hardening via nanoindentation. Strain hardening, which describes the increase in strength with plastic deformation, affects fracture toughness and ductility, and is an important engineeri...
متن کاملThermomechanics of monolayer graphene: Rippling, thermal expansion and elasticity
Thermomechanical properties of monolayer graphene with thermal fluctuation are studied by both statistical mechanics analysis and molecular dynamics (MD) simulations. While the statistical mechanics analysis in the present study is limited by a harmonic approximation, significant anharmonic effects are revealed by MD simulations. The amplitude of out-ofplane thermal fluctuation is calculated fo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Physical chemistry chemical physics : PCCP
دوره 18 20 شماره
صفحات -
تاریخ انتشار 2016